

Station Information Report

Solar and Meteorological Station

Pacific Power Association - Majuro, Marshall Islands

Revision	Date	Author	Checked	Approved	Comments
Rev 0	11 Mar 2020	M. de Jager	J. van Jaarsveldt	M. de Jager	First Issue
Rev 1					
Rev 2					

Contents

1	Introduction	2
2	Station Summary	3
3	Map of area	4
4	Site layout	5
5	Instrument list, serial numbers and multipliers	7
6	Supporting hardware and communication peripherals	8
7	Data logger wiring	8
8	Power circuit diagram	
9	Detail Photographs	11
10	Terrain Photographs	
11	Station Photographs	25
12	Calibration Certificates	

1 Introduction

The World Bank initiated the Sustainable Energy Industry Development Project (SEIDP) to, amongst others, support the Pacific Power Association (PPA) in doing renewable energy resource assessments. The focus for this particular section of the project is to get high quality bankable wind as well as irradiance measurements supported by high quality meteorological measurements and to promote the awareness of the resource potential of wind and solar energy.

GeoSUN Africa is to execute the on-site measurement related aspects of the solar section of the project. The assignment for GeoSUN Africa is the following:

- An inception mission which involves visiting the proposed site locations and selecting the optimal location for the measurement equipment. The outcome of this inception mission is this implementation plan where sites and stations tiers are proposed;
- Providing high quality measuring equipment for each site, in line with the technical specifications;
- Installation of measurement equipment as well as subsequent Site Installation Report and photographs for each site;
- Hosting and providing two years of high quality, 'bankable' meteorological data relevant for solar resource assessment and project development;
- Ensuring maintenance, security, local cleaning/caretaking, and mitigation against extreme weather events and corrosion;
- Ensuring strong local involvement and capacity building at all stages of the measurement campaign;
- Decommissioning of all sites at the end of the measurement campaign, unless separate arrangements are made with one or more host institutions to continue with measurements outside of this assignment/contract.

This document acts as the Site Installation Report which follows the commissioning of the site, outlining the site location, site characteristics, technical specifications, calibration procedures, and all other relevant information to allow data users to fully understand the site and ensure the bankability of the measurement data. The Site Installation Report contains photographs of the site and the surrounding terrain.

The measurement data from the site will be continuously transferred to GeoSUN's central data repository, and shall then be transferred to the PPA on a monthly basis in both raw and quality-controlled formats according to the specifications developed by ESMAP. This data will be delivered via an online file sharing platform one month in arears. Site Measurement Reports will accompany the delivery of monthly data, and shall detail any issues with the site or equipment, field calibration procedure, and any notable conclusions or results.

The assignment shall be deemed completed once two years of concurrent data is delivered in compliance with the minimum data recovery rates specified. At this point the vendor shall decommission each site and remove the solar measurement equipment, unless alternative arrangements outside the scope of this assignment/contract are made and endorsed by the relevant client/host agency.

2 Station Summary

Work performed	Installation and commissioning of solar and			
	meteorological measurement station			
Commissioning date	11 March 2020			
Planned decommissioning date	11 March 2022			
Client	Pacific Power Association			
Client contact person and contact	Name: Wairarapa J. Young			
details	Email: rapa@ppa.org.fj			
	Telephone: (679) 330 6022			
Site location	Next to the runway in front of Air Marshall			
	Islands hanger.			
	<u>165°E 168°E 171°E</u> 15°N			
	12°N			
	9°N			
	6°N			
Access	Starting at the airport terminal, head west			
	along the runway boundary fence until Gate			
	D is reached. Enter Gate D and pass			
	between the ARFF and Air Marshall Islands			
	buildings to find the station in front of the Air			
	Marshall Islands hanger.			
Coordinates	07° 03' 54.2" N, 171° 16' 08.0" E			
	(7.065048, 171.268887)			
Elevation	5 m AMSL			
Time zone (local and data logger)	GMT +12 local time zone			
Name and contact details of on-site	Name: John Aikuj			
contact person(s)	Phone: 00 692 455 1840			

3 Map of area

Figure 1: Map of the surrounding area (Source: Google Earth)

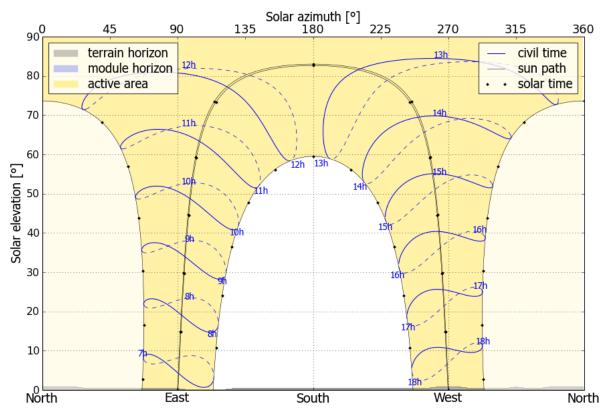


Figure 2: Terrain horizon and day length (Source: Solargis)

4 Site layout

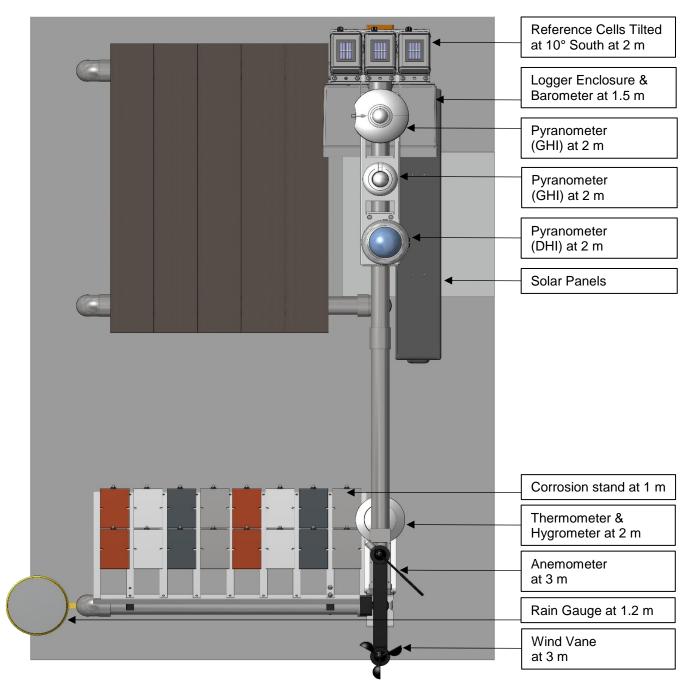


Figure 3: Site Layout (plan view)

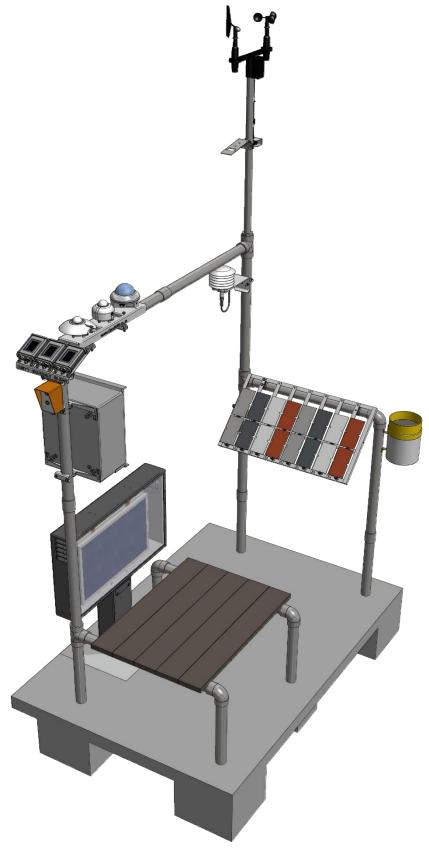


Figure 4: Site Layout (perspective view)

5 Instrument list, serial numbers and multipliers

Instrument (Measurement)	Make and Model	Serial Number	Variable Name (Program)	Multiplier
Pyranometer (GHI)	Hukseflux SR30-D1	4266	GHI_1	10.31 µV/W/m ²
Pyranometer (GHI)	Hukseflux SR20-T2	10498	GHI_2	15.72 µV/W/m²
Pyranometer (DHI)	Delta Electronics SPN 1	A2061	GHI_SPN1	1
Reference Cell Clean	Ingenieurbüro Si-mV-85-A	85-00205-17- 19350083	RefCellClean	59.17 µV/W/m²
Reference Cell Monthly	Ingenieurbüro Si-mV-85-A	85-00205-17- 19350084	RefCellMonthly	58.26 µV/W/m ²
Reference Cell Dirty	Ingenieurbüro Si-mV-85-A	85-00205-17- 19350088	RefCellDirty	57.21 µV/W/m ²
3-Cup Anemometer (Wind speed)	RM Young 03002	016674	WSpd	0.2 Offset 0.75 Slope
Wind Vane (Wind Direction)	RM Young 03002	016674	WDir	0 Offset 352 Slope
Temperature Sensor (Ambient Temperature)	Campbell Scientific CS215	E22418	Temp	1
Relative humidity Sensor (Relative Humidity)	Campbell Scientific CS215	E22418	RH	1
Barometer (Atmospheric Pressure)	Vaisala PTB110	R3331016	BP	500 offset 0.24 slope
Rain Gauge (Rain)	Texas Electronics TR-525I	81179-819	Rain	0.2 mm/tip
Corrosion Plate	Make	Sample	Position (Column, Row)	Mass (g)
		A1	C1, R1	134.0974
Mild Steel plate	Orytech Mild	A2	C1, R2	133.1516
(Corrosion Testing)	Steel	A3	C5, R1	136.9660
		A4	C5, R2	137.5104
H.D. Galvanicod (Zino)		A1	C3, R1	81.9832
H.D. Galvanised (Zinc) plate	Orytech H.D.	A2	C3, R2	81.6665
(Corrosion Testing)	Galvanised (Zinc)	A3	C7, R1	81.9193
		A4	C7, R2	82.0819
		A1	C4, R1	82.2255
Copper plate	Orytech Copper	A2	C4, R2	81.4355
(Corrosion Testing)		A3	C8, R1	81.4751
		A4	C8, R2	82.4692
		A1	C2, R1	38.0860
Aluminium plate	Orytech	A2	C2, R2	37.5495
(Corrosion Testing)	Aluminium	A3	C6, R1	38.1755
		A4	C6, R2	37.8873

6 Supporting hardware and communication peripherals

Data Logger	Campbell Scientific CR1000X (OS:Std.03.02)
Communication	RS232 (115200) TCP/IP
Pakbus Address	781
Password Set	None
Modem	Campbell Scientific CELL215 Cellular Module
Network Details	Service provider: NTA Phone number: 692 458 4546
Modem Power Control	CS I/O Port
Data Logger Clock	GMT+12
Main Battery	2 x 12 V / 24 Ah
Solar Panel(s)	2 x 25 W
Charge Controller	2 x CPL Research (10 A)

7 Data logger wiring

PPA Wiring Diagram November 2019- CR1000x							
Logger Port	Accessories	Connection	Instrument Cable	Function	Reading	Instrument	
		C7	Grey	A-			
		C8	White	B+			
		AGB	Shield	GND		6020	
	250mA Fast-Blow	PB-Fused	Brown	12V	GHI1	SR30	
		GB	Black	0V			
			Blue	NC			
		3H	White	Signal +			
		3L	Green	Signal -			
		AGB	Black	GND			
	SW12-2		Yellow	Heater +	GHI2	SR20	
		G	Brown	Heater -			
VX1	10kΩ 0.1% Resistor	SE4	Red+Pink	Temp +			
	·	AG2	Blue+Grey	Temp -			
		5H	White	GHI +			
		6H	Brown	DHI +			
		5L	Green	Signal -			
		6L	Bridged with 5L	/Signal -	DHI	SPN1	
		GB	Grey	0 V			
		PB	Pink	12 V			

SW12-2		Red	Heater +		
	G	Blue	Heater -		
	AGB	Clear	GND		
	NC	Yellow	Sun		
	PB	Red	12 V		
	C1	Green	Signal +		
	GB	White	0 V	Temp & RH	CS215
	GB	Black	0 V		
	AGB	Clear	GND		
	SE13	Orange	Signal +		
	AG6	Blue	Signal -	Clean	Ref cell
	AGB	Black	GND		
	SE14	Orange	Signal +		
	AG7	Blue	Signal -	Monthly	Ref cell
	AGB	Black	GND	,	
	SE15	Orange	Signal +		
	AG7	Blue	Signal -	Dirty	Ref cell
	AGB	Black	GND	,	
	VX2	Blue	Excitation		
	SE16	Green	Signal +		
	AG8	White	Signal -	Wind Speed	
	AGB	Clear	GND	& Direction	03002
	P1	Red	Signal +		
	AGB	Clear	GND		
	P2	Black	Signal +		
	AG	White	Signal -	Rain	TE525
	AGB	Clear	GND	Nam	
	C5	Red	Signal +		
	C2	Green	Light +		Clean
	C3	Blue	Signal -	Clean	Button
	AGB	Clear	GND		Dutton
	C4	Yellow	Signal +		
	C2	Green	Light +		Monthly
	C3	Blue	Signal -	Monthly	Button
	AGB	Clear	GND		Dutton
	C6	Red	Signal +		
	G	Blue	Signal -	Gate	Switch
	AGB	Clear	GND		Switch
	SE7	Blue/Brown	Signal +		
	12V	Red	12V		
			1		
	5V	Green	Signal +	Pressure	PTB110
	G	Black	Signal -		
	AG	Yellow/White	GND		
	AG	Clear	GND		

8 Power circuit diagram

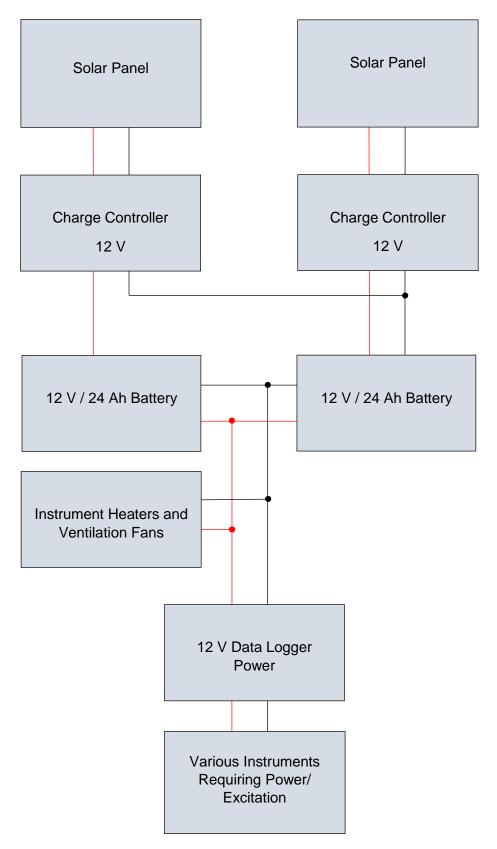


Figure 5: The DC power circuit

9 Detail Photographs

This section showcases details of the installation, including the main station components. Records are shown of instrument makes, models and serial numbers, as well as the installation levels and orientation where applicable.

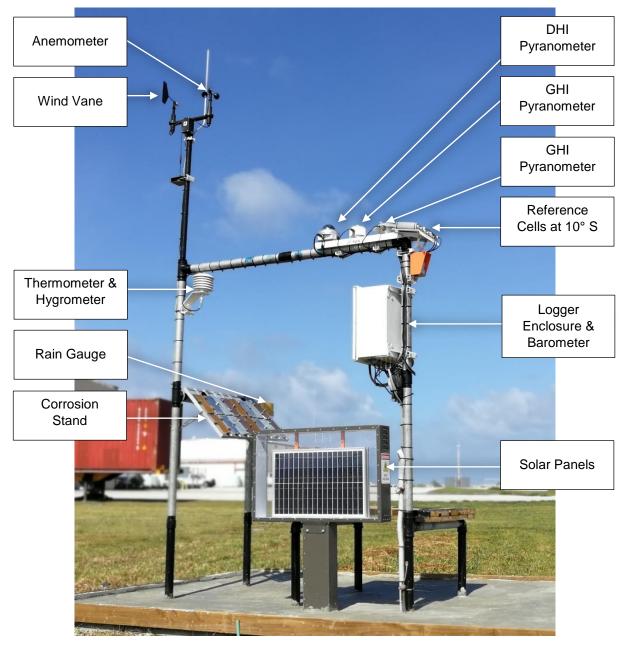


Figure 6: Station Summary

Figure 7: GHI (1) Pyranometer Installation

Figure 8: GHI (2) Pyranometer Installation

Figure 9: DHI Pyranometer Installation

Figure 10: Wind instruments at 3 m

Figure 11: Thermometer and Hygrometer at 2 m

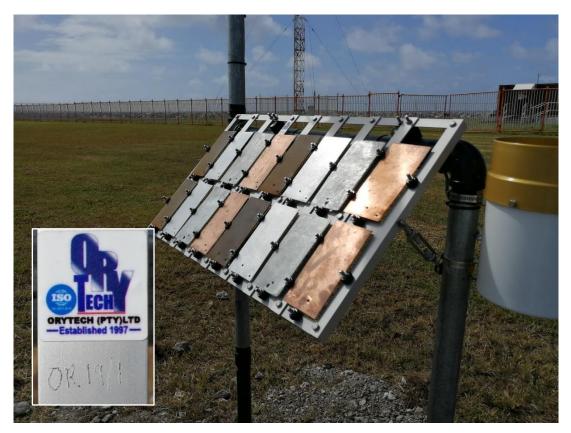


Figure 12: Corrosion Test Stand

Figure 13: Rain Gauge

Figure 14: Barometer

Figure 15: Reference Cells at 10° South

Figure 16: Solar Panel

Figure 17: Logger Enclosure

10 Terrain Photographs

Obstacles protruding higher than the horizon as viewed from the solar instruments will affect lower solar elevation readings if they fall within the sun path as depicted in Figure 2. The pictures in this section shows the terrain surrounding the station at the time of installation, giving an indication of near or far shading influences on the station.

Figure 18: 0/360 Degrees (North)

Figure 19: 30 Degrees

Figure 20: 60 Degrees

Figure 21: 90 Degrees (East)

Figure 22: 120 Degrees

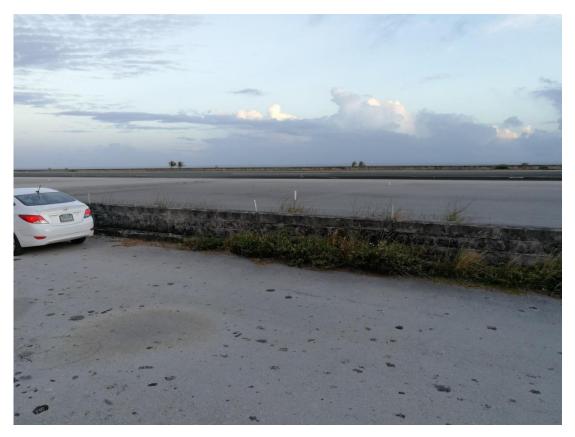


Figure 23: 150 Degrees

Figure 24: 180 Degrees (South)

Figure 25: 210 Degrees

Figure 26: 240 Degrees

Figure 27: 270 Degrees (West)

Figure 28: 300 Degrees

Figure 29: 330 Degrees

11 Station Photographs

This section indicates the station within the surrounding terrain to give an overall view thereof, as well as provide additional context to the possible near and far shading influences.

Figure 30: 0/360 Degrees (From North)

Figure 31: 30 Degrees

Figure 32: 60 Degrees

Figure 33: 90 Degrees (From East)

Figure 34: 120 Degrees

Figure 35: 150 Degrees

Figure 36: 180 Degrees (From South)

Figure 37: 210 Degrees

Figure 38: 240 Degrees

Figure 39: 270 Degrees (From West)

Figure 40: 300 Degrees

Figure 41: 330 Degrees

12 Calibration Certificates

Hukseflux Thermal Sensor	S	Hukseflux The www.hukseflux. info@hukseflux.	
Calibration c	ertificate	Pages Release date:	1 24 SEP, 2019
Product code Product identification Product type Measurand	SR30-D1 serial number 4266 pyranometer hemispherical solar radiation		
Calibration result Sensitivity Calibration uncertainty	$\begin{split} & S = 10.31 \times 10^{-6} \text{ V/(W/m}^2) \\ & \pm 0.10 \times 10^{-6} \text{ V/(W/m}^2) \end{split}$)	
	the number following the \pm s coverage factor k = 2, and de level of confidence of 95 perc	efines an interval esti	ed uncertainty with a mated to have a
Reference conditions	20 °C, normal incidence solar irradiance level 1000 W/m ²	radiation, horizontal	l mounting,
Measurement process Metrological characteristic	S in [V/(W/m ²)]: sensitivity t x 10 ⁻⁹ m range, with 180° fiel	o irradiance in the 30 d of view angle, valid	00 to 3000 for reference
Calibration method Measurement equipment	conditions indoor calibration according to Hukseflux Solar Radiation Cal		
Metrological traceability Calibration traceability Calibration hierarchy Norking standard Calibration institute Standard sensitivity	to WRR (World Radiometric R from WRR through ISO 9846 pyranometer type SR30-D1, s PMOD World Radiation Center 9.94 x 10 ⁻⁶ V/(W/m ²)	and ISO 9847 serial number 2484	
Evaluation of the uncertai	nty of the calibration result the calibration uncertainty cal the squares of the calibration uncertainty of the method and the reference conditions is ±	uncertainty of the wo	orking standard, the
Person performing calibra N.E. Handayani	tion:	Calibration 20 SEP, 201	
Person authorising calibra 4. Rietveld	tion result of product:	Date: 24 SEP, 201	.9

Product code Product identification Product type Measurand Classification	tificate sr30-D1	Pages: 4 Release date: 24 SEP, 2019
Product identification Product type Measurand	SR30-D1	
	serial number 4266 pyranometer hemispherical solar radiatior secondary standard (ISO 90	n 160), high quality (WMO-No. 8)
Calibration result Sensitivity Calibration uncertainty	$\begin{split} S &= 10.31 \times 10^{-6} \ V/(W/m) \\ &\pm \ 0.10 \times 10^{-6} \ V/(W/m^2) \end{split}$	
	the number following the \pm : coverage factor k = 2, and c level of confidence of 95 per	symbol is the expanded uncertainty with a lefines an interval estimated to have a cent
2:resistance3:insulation4:response5:temperat6:directional	secondary standard	verified 20.5 Ω > 100 x 10 ⁶ Ω 3.4 s verified verified ± 1 ° (0 to 90 °)
Table 0.1 connections		
1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	NIRE Brown VDC [+] Black VDC [-] Blue not connecte White RS-485 B / B' Grey RS-485 A / A' Grelow shield	[+]
Calibration procedure acc	ording to ISO 9847. Traceability of naintained at the World Radiation C	
	anual for set up, operation and ma	aintenance instructions, and information on

SR30-D1 product certificate

page 1/4

•	X	www.hukseflux info@hukseflux	
Directional r	response	Pages: Release date:	4 24 SEP, 2019
Product code Product identification Product type Measurand Classification	SR30-D1 serial number 4266 pyranometer hemispherical solar radia secondary standard (ISC		IO-No. 8)
Characterisation result			
Directional response	$\leq \pm 4.1 \text{ W/m}^2$		
Measurement process Characterised parameter	dependence of sensitivity measure of the deviation azimuthal variation)	v resulting from the direct s from an ideal cosine re	tion of irradiance (a sponse and its
Measurement functions	$\begin{split} &C_{rel} = S(\theta)/(S(0)\cdot \cos(\theta) \cdot \\ & \text{with } C_{rel} \text{ the deviation from } \\ & \text{in } [\%], S(\theta) \text{ the sensitive } \\ & [V/(W/m^2)], S(0) \text{ the sensitive } \\ & \text{incidence, } \theta \text{ the incoming } \\ & C_{abs} = (S(\theta)/(S(0)\cdot \cos(\theta)) \\ & \text{with } C_{abs} \text{ the directional results} \end{split}$	m an ideal cosine respon ty to beam irradiance at nsitivity to beam irradianc g angle from zenith in [°] $(-1))\cdot \cos(\theta)\cdot 1000$	zenith angle θ in ce at normal
Measurement equipment	Hukseflux Directional Res		
Conformity assessment			
Definition of measurand	The directional response reported sensitivity is val whose normal incidence i	id when measuring from	
Acceptance interval	ISO 9060 specifies a limi	t on the directional respo	nse for a secondary
	standard pyranometer of	$+ 10 W/m^2$	

Table 0.2 direc	tional respo	nse test	result
DIRECTIONAL	RESPONSE	TEST	

azimuth	North		East		South		West	
zenith	C _{abs} [W/m²]	C _{rel} [%]	C _{abs} [W/m ²]	C _{rel} [%]	C _{abs} [W/m ²]	C _{rel} [%]	C _{abs} [W/m²]	C _{rel} [%]
40 °	+0.8	+0.1	+0.8	+0.1	-0.8	-0.1	-1.1	-0.1
60 °	+2.2	+0.4	+0.8	+0.2	-0.3	-0.1	+0.2	+0.0
70 °	+2.3	+0.7	+0.9	+0.3	-0.3	-0.1	+0.6	+0.2
80 °	+4.1	+2.4	+1.9	+1.1	+2.0	+1.2	+2.9	+1.7

Person performing characterisation: L. Asaa Date: 18 SEP, 2019

SR30-D1 product certificate

page 2/4

Hukseflux Thermal Sensors		Hukseflux Thermal Sensors B.V. www.hukseflux.com info@hukseflux.com			
Temperature	response	Pages: Release date:	4 24 SEP, 2019		
Product code Product identification Product type Measurand Classification	SR30-D1 serial number 4266 pyranometer hemispherical solar radiat secondary standard (ISO		IO-No. 8)		
Characterisation result Temperature response Temperature coefficients [*]	< \pm 0.00 % (-30 to +50 °C) a = -20.0298 x 10 ⁻⁶ °C ⁻² b = 2.4338 x 10 ⁻⁴ °C ⁻¹ c = 1.0031				
* These temperature coefficients	are applied internally in the ins	trument			
Measurement process					
Characterised parameter Measurement function	dependence of sensitivity $S(T) = S_0 \cdot (a \cdot T^2 + b \cdot T + c)$				
	with S(T) sensitivity in [V/(W/m ²)] at an instrument body tempe T, S ₀ sensitivity at 20 °C instrument body temperature, T the instrument body temperature in [°C], a, b and c the temperatur coefficients determined from a second order polynomial fit				
Measurement equipment	Hukseflux Temperature Response Characterisation				
Conformity assessment					
Definition of measurand [*]	Temperature response is the remaining percentage deviation in sensitivity due to change in ambient temperature within a temperature interval after the temperature coefficients are applied				
Temperature interval	-30 to +50 °C				
Acceptance interval	Hukseflux specifies a limit on the temperature response for a SR30-D1 of \pm 0.4 %				
	Conformity verified				

 * This is an adaptation of the definition in ISO 9060, which specifies a limit on the temperature response for a secondary standard pyranometer of 2 % within a temperature interval of 50 K.

Table 0.3	temperature	dependence	test result				
TEMPERATURE DEPENDENCE TECT							

TEMPERATURE DEPENDENCE TEST						
T [°C]	-30	-10	10	30	50	
remaining deviation	+0.00 %	+0.00 %	+0.00 %	+0.00 %	+0.00 %	

Person performing characterisation: H.A. Kanij

Date: 18 SEP, 2019

SR30-D1 product certificate

page 3/4

Hukseflux Thermal Sensors

Hukseflux Thermal Sensors B.V. www.hukseflux.com info@hukseflux.com

Tilt sensor characterisation

Pages: Release date:

4 24 SEP, 2019

Product code Product identification Product type Measurand Classification SR30-D1 serial number 4266 pyranometer hemispherical solar radiation secondary standard (ISO 9060), high quality (WMO-No. 8)

Characterisation result	x-axis	y-axis	z-axis
gain	1.0069	0.9976	0.9947
offset	-364	188	-176
temperature coefficient a ₀	0.1070 x 10 ⁻¹²	-1.5986 x 10 ⁻¹²	-0.0640 x 10 ⁻¹²
temperature coefficient a ₁	2.3658	-0.1280	0.8389
temperature coefficient a ₂	0.1482 x 10 ⁻²	0.1182 x 10 ⁻²	-1.5710 x 10 ⁻²
temperature coefficient a ₃	-1.0942 x 10 ⁻⁴	-0.4059 x 10 ⁻⁴	-5.6989 x 10 ⁻⁴

* These gains, offsets and temperature coefficients are applied internally in the instrument

Measurement process

Characterised parameters	tilt sensor gains and offsets
Measurement equation	$\theta = 360/2\pi \cdot \operatorname{atan}((x^2 + y^2)^{1/2}/z)$
	$x_{y,z} = gain_{x,y,z} \cdot raw_{x,y,z} + offset_{x,y,z} + d_{x,y,z}(T)$
	$d_{x,y,z}(T) = a_{0x,0y,0z} + a_{1x,1y,1z} T + a_{2x,2y,2z} T^2 + a_{3x,3y,3z} T^3$
	with θ the sensor tilt angle with respect to the horizontal in [°],
	atan the arctangent function, x, y and z the corrected accelerometer
	counts, $gain_{x,y,z}$ the tilt sensor gains, $raw_{x,y,z}$ the raw accelerometer
	counts, offset _{x,y,z} the tilt sensor offsets, $d_{x,y,z}(T)$ the correction for
	temperature dependence of the tilt measurement at an instrument
	body temperature T, a_0 , a_1 , a_2 and a_3 the temperature coefficients determined from a third order polynomial fit. Labels x, y and z refer to
	the three accelerometer axes.
Measurement process	Alignment with the bubble level is attained in horizontal position by
	introducing gains and offsets.
	Gains and offsets are determined in horizontal position and at a tilt
	angle of 90 °. Temperature dependence of the tilt measurement is
	determined at a tilt angle of 90 ° between -30 and + 50 °C.
Measurement method	Hukseflux Tilt Sensor Characterisation
Conformity assessment	
Description of assessment	The tilt measurement uncertainty is verified in horizontal position and
	at a tilt angle of 90 °
Acceptance interval	The tilt measurement uncertainty is specified at \pm 1° (0 to 90 °)
Conclusion	Conformity verified
Person performing tilt sens	sor characterisation: Date:

L. Asaa

Date: 24 SEP, 2019

SR30-D1 product certificate

page 4/4

1	Hukseflux	
7	пикзених	
	Thermal Sensors	

Hukseflux Thermal Sensors B.V. www.hukseflux.com info@hukseflux.com

Calibration certificate

Pages Release date: 1 24 SEP, 2019

Product code Product identification Product type Measurand	SR20-T2 serial number 10498 pyranometer hemispherical solar radiation	
Calibration result Sensitivity Calibration uncertainty	coverage factor k = 2, and defir level of confidence of 95 percen	
Reference conditions	20 °C, normal incidence solar ra irradiance level 1000 W/m ²	idiation, horizontal mounting,
Measurement process Metrological characteristic	S in [V/(W/m ²)]: sensitivity to i x 10 ⁻⁹ m range, with 180° field c conditions	rradiance in the 300 to 3000 of view angle, valid for reference
Calibration method Measurement equipment	indoor calibration according to I Hukseflux Solar Radiation Calibr	
Metrological traceability Calibration traceability Calibration hierarchy Working standard Calibration institute Standard sensitivity	to WRR (World Radiometric Refe from WRR through ISO 9846 an pyranometer type SR20, serial PMOD World Radiation Center, I 14.60 x 10 ⁻⁶ V/(W/m ²)	nd ISO 9847 number 5039
Evaluation of the uncertai Uncertainty calculation	the squares of the calibration u	ulated as the square root of the sum of ncertainty of the working standard, the the uncertainty due to deviations from 0 %.
Person performing calibra D. Bemelman	ition:	Calibration Date: 24 SEP, 2019
Person authorising calibra H.E. Brouwer	ation result of product:	Date: 24 SEP, 2019

Certificate identification: 201909.SR20-T2.10498.01

page 1/1

Hu	kseflu mal Senso	X rs	Hukseflux Thermal Sensors B.V. www.hukseflux.com info@hukseflux.com
Produ	uct cert	ificate	Pages: 3 Release date: 24 SEP, 2019
Product coo Product ide Product typ Measurand Classificatio	entification De	SR20-T2 serial number 10498 pyranometer hemispherical solar radiation secondary standard (ISO 9060)), high quality (WMO-No. 8)
Calibratio Sensitivity Calibration			nbol is the expanded uncertainty with a nes an interval estimated to have a nt
Measureme	ent function	E = U/S with E irradiance in [W/m ²], U	voltage output in [V]
Product s 1: 2:	pecifications a ISO 9060 s resistance	nd conformity econdary standard	verified 65.8 Ω
3: 4: 5: 6:	temperatur directional	me (95 %) e response [*]	> 100 x 10 ⁶ Ω 3.9 s verified verified
	connections		t quanty
PIN 2 3	WIR Red Pink	10 kΩ thermistor [+]	
6 8 1	Blue Grey Brow	10 kΩ thermistor [−] n heater	
4 9 7 5	Yellov Black White Gree	ground e signal [+] n signal [-]	
Calibration	procedure accordi	gle four-wire thermistor measuring instr ng to ISO 9847. Traceability of calibratic World Radiation Center in Davos, Switz	n is to the WRR (World Radiometric
Please cons		al for set up, operation and maintenanc	
measaren		eptance and release of product:	Date:

Hukseflux Thermal Sensors	Hukseflux Thermal Sensors B.V. www.hukseflux.com info@hukseflux.com
Directional re	Pages: 3 Release date: 24 SEP, 2019
Product code Product identification Product type Measurand Classification	SR20-T2 serial number 10498 pyranometer hemispherical solar radiation secondary standard (ISO 9060), high quality (WMO-No. 8)
Characterisation result Directional response	≤ ± 5.5 W/m²
Measurement process Characterised parameter	dependence of sensitivity resulting from the direction of irradiance (a measure of the deviations from an ideal cosine response and its azimuthal variation)
Measurement functions	$ \begin{array}{l} C_{rel} = S(\theta)/(S(0)\cdot\cos(\theta)-1)\cdot100 \ \% \\ \text{with } C_{rel} \ \text{the deviation from an ideal cosine response at zenith angle } \theta \\ \text{in } [\%], \ S(\theta) \ \text{the sensitivity to beam irradiance at zenith angle } \theta \\ \text{in } [V/(W/m^2)], \ S(0) \ \text{the sensitivity to beam irradiance at normal incidence, } \theta \ \text{the incoming angle from zenith in } [°] \\ C_{abs} = (S(\theta)/(S(0)\cdot\cos(\theta)-1))\cdot\cos(\theta)\cdot1000 \\ \text{with } C_{abs} \ \text{the directional response as defined below in } [W/m^2] \\ \text{Hukseflux Directional Response Characterisation} \end{array} $
Measurement equipment	Huksenux Directional Response characterisation
Conformity assessment Definition of measurand	The directional response is the error caused by assuming that the reported sensitivity is valid when measuring from any direction a bear whose normal incidence is 1000 W/m ² ISO 9060 specifies a limit on the directional response for a secondary

Table	0.2	directional	response	test	result

DIRECTI	IONAL RES	SPONSE TI	EST					
azimuth	North	New Class	East		South		West	
zenith	C _{abs} [W/m ²]	C _{rel} [%]	C _{abs} [W/m ²]	C _{rel} [%]	C _{abs} [W/m ²]	C _{rel} [%]	C _{abs} [W/m²]	C _{rel} [%]
40 °	+0.8	+0.1	-1.3	-0.2	-0.6	-0.1	+2.2	+0.3
60 °	-1.0	-0.2	-3.7	-0.7	-0.6	-0.1	+1.4	+0.3
70 °	-4.0	-1.2	-5.5	-1.6	-1.6	-0.5	+0.0	+0.0
80 °	-3.8	-2.2	-3.9	-2.2	-0.2	-0.1	+0.0	+0.0

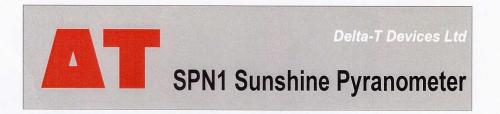
Person performing characterisation: K. Ismail **Date:** 20 SEP, 2019

SR20-T2 product certificate

page 2/3

Hukseflux Thermal Sensors		Hukseflux The www.hukseflux.o info@hukseflux.o	
Temperature	response	Pages: Release date:	3 24 SEP, 2019
Product code Product identification Product type Measurand Classification	SR20-T2 serial number 10498 pyranometer hemispherical solar radiation secondary standard (ISO 9060)	, high quality (WM	IO-No. 8)
Characterisation result Temperature response Temperature coefficients	\pm 0.2 % a = -5.6375 x 10 ⁻⁶ °C ⁻² b = 1.9694 x 10 ⁻⁴ °C ⁻¹ c = 0.9983		
Measurement process Characterised parameter Measurement function Measurement equipment	dependence of sensitivity to am $S(T) = S_0 \cdot (a \cdot T^2 + b \cdot T + c)$ with $S(T)$ sensitivity in [V/(W/m T , S_0 sensitivity at 20 °C instrumin instrument body temperature in coefficients determined from a sensitivity Hukseflux Temperature Respon	²)] at an instrum nent body temper n [°C], a, b and c second order poly	ent body temperature rature, T the the temperature nomial fit
Conformity assessment Definition of measurand	Temperature response is the pe change in ambient temperature	ercentage deviatio within an interva	n in sensitivity due to I of 50 K
Temperature interval Acceptance interval	-10 to +40 °C ISO 9060 specifies a limit on th standard pyranometer of 2 %	e temperature res	ponse for a secondary
Conclusion	Conformity verified		

Table 0	.3 tempe	rature dep	endence Le	stresuit			
TEMPER	RATURE	DEPENDE	NCE TEST				
T [0C]	-30	-20	-10	0	10	20	


T [°C]	-30	-20	-10	0	10	20	30	40	50
- L	-1.3 %	-0.8 %	-0.4 %	-0.2 %	+0.0 %	+0.0 %	-0.1 %	-0.3 %	-0.6 %

Person performing characterisation: L. Asaa Date: 18 SEP, 2019

SR20-T2 product certificate

page 3/3

Calibration Certificate

This is to certify that the Sunshine Pyranometer type SPN1 identified below has been calibrated in accordance with Delta-T Devices Ltd standard production procedures and conforms to the specifications as detailed.

Serial Number	SPN1 – A2061
Date	24/09/19
Authorised Signature	A

We recommend that this instrument is recalibrated every 2 years.

Traceability

The SPN1 is calibrated under a uniform light source which simulates the solar spectrum, against a transfer standard SPN1. The transfer standard is calibrated outdoors against a Kipp & Zonen CM21 secondary standard pyranometer (calibration traceable to the World Radiometric Reference), with solar tracker and shading disk for diffuse measurement.

Accuracy, Total (Global) and Diffuse radiation

When correctly calibrated, the expected accuracy is given in the table below. The figures give 95% confidence limits, i.e. 95% of individual readings will be within the stated limits under normal climatic conditions.

Overall accuracy:	$\pm 5\%$ daily integrals $\pm 5\% \pm 10$ W.m 2 hourly averages $\pm 8\% \pm 10$ W.m 2 individual readings
Range	0 to >2000 W.m ⁻²
Analogue output sensitivity	1mV = 1 W.m ⁻²

Delta-T Devices Ltd 130 Low Road, Burwell, Cambridge, CB25 0EJ, UK Tel: +44 1638 742922 Fax: +44 1638 743155 email: <u>sales@delta-t.co.uk</u> web: <u>www.delta-t.co.uk</u>

Solar & Meteorological Station - Installation Report

INGENIEURBÜRO

Mencke & Tegtmeyer GmbH Meßgeräte für die Solartechnik Schwarzer Weg 43A 31789 Hameln, Germany www.ib-mut.de

Calibration Certificate Silicon Irradiance Sensor

Si-mV-85-A Sensor Type: Serial No.: 85-00205-17-19350083 Comment:

Irradiance Calibration with Artificial Light in Comparison to a Reference Cell

Calibrated by: Date / Time:	Huhnstock-Breuer 28.08.2019	13:47				
· ·	Туре	Calibration µV/W/m²	Temperature Coefficient	Output mV	Temperature °C	Irradiance ¹⁾ W/m ²
Reference Cell	Si-Ref mono PTB-1	56,51	0,00067	56,953	30,76	1004,0
	Туре	Irradiance W/m²	Correction Factor 3)	Output mV	Temperature °C	Calibration
Test Object	Si-mV-85-A	1004,0	0,995686	59,659	31,19	59,17

Test Equipment Irradiance Calibration

Manufacturer	Туре	Serial No.	Calibration Certificate	Trace	
Ingenieurbüro Mencke & Tegtmeyer GmbH	Si-Ref mono PTB-1	02-20002-05- 15309999	47109-PTB-18	PTB	
Gantner Instruments	IDL100	191667	098220-02 D-K-15019-01-00	DKD	
OMEGA Engineering	ISM111 IN510	078743 9894	098221-02 D-K-15019-01-00 ./.	DKD ./.	

Output * 1000

 $^{(1)} Irradiance = \frac{Calibration * (1 + Temperature Coefficient * (Temperature - 25))}{Calibration * (1 + Temperature Coefficient * (Temperature - 25))}$

²⁾Calibration = $\frac{Output * 1000 * Correction Factor}{1000 * Correction Factor}$ Irradiance

³⁾ Individual calculated for each Calibration Process, must not be used for Outdoor Application.

Solar & Meteorological Station - Installation Report

INGENIEURBÜRO Mencke & Tegtmeyer GmbH Meßgeräte für die Solartechnik

31789 Hameln, Germany

Schwarzer Weg 43A

www.ib-mut.de

Calibration Certificate Silicon Irradiance Sensor

Si-mV-85-A Sensor Type: 85-00205-17-19350084 Serial No.: Comment:

Irradiance Calibration with Artificial Light in Comparison to a Reference Cell

Calibrated by: Date / Time:	Huhnstock-Breuer 28.08.2019	13:47				
	Туре	Calibration µV/W/m²	Temperature Coefficient 1/°C	Output mV	Temperature °C	Irradiance ¹⁾ W/m ²
Reference Cell	Si-Ref mono PTB-1	56,51	0,00067	56,953	30,76	1004,0
	Туре	Irradiance W/m²	Correction Factor ³⁾	Output mV	Temperature °C	µV/W/m²
Test Object	Si-mV-85-A	1004,0	0,995956	58,728	30,8	58,26

Test Equipment Irradiance Calibration

Manufacturer	Туре	Serial No.	Calibration Certificate	Trace	
Ingenieurbüro Mencke & Tegtmeyer GmbH	11	02-20002-05- 15309999	47109-PTB-18	РТВ	
Gantner Instruments	IDL100	191667	098220-02 D-K-15019-01-00	DKD	
Gantiler matuments	ISM111	078743	098221-02 D-K-15019-01-00	DKD	
OMEGA Engineering	IN510	9894	Л.	Л.	

Output * 1000

 ${}^{(1)}Irradiance = \frac{1}{Calibration * (1 + Temperature Coefficient * (Temperature - 25))}$

 $^{2)}Calibration = \frac{Output * 1000 * Correction Factor}{0}$

Irradiance

³⁾ Individual calculated for each Calibration Process, must not be used for Outdoor Application.

Solar & Meteorological Station - Installation Report

INGENIEURBÜRO

Mencke & Tegtmeyer GmbH Meßgeräte für die Solartechnik Schwarzer Weg 43A 31789 Hameln, Germany www.ib-mut.de

Calibration Certificate Silicon Irradiance Sensor

Sensor Type: Serial No.: Comment:

Si-mV-85-A 85-00205-17-19350088

Irradiance Calibration with Artificial Light in Comparison to a Reference Cell

Calibrated by: Date / Time:	Huhnstock-Breuer 28.08.2019	13:48				
	Туре	Calibration µV/W/m²	Temperature Coefficient 1/°C	Output mV	Temperature °C	Irradiance ¹⁾ W/m ²
Reference Cell	Si-Ref mono PTB-1	56,51	0,00067	56,953	30,76	1004,0
	Туре	Irradiance W/m²	Correction Factor ³⁾	Output mV	Temperature °C	Calibration µV/W/m²
Test Object	Si-mV-85-A	1004,0	0,995783	57,679	31,05	57,21

Test Equipment Irradiance Calibration

Manufacturer	Туре	Serial No.	Calibration Certificate	Trace
Ingenieurbüro Mencke & Tegtmeyer GmbH	Si-Ref mono PTB-1	02-20002-05- 15309999	47109-PTB-18	PTB
Gantner Instruments	IDL100	191667	098220-02 D-K-15019-01-00	DKD
	ISM111	078743	098221-02 D-K-15019-01-00	DKD
OMEGA Engineering	IN510	9894	./.	Л.

¹⁾Irradiance = <u>Output * 1000</u> <u>Calibration * (1 + Temperature Coefficient * (Temperature - 25))</u>

 $^{2)}Calibration = \frac{Output * 1000 * Correction Factor}{Irradiance}$

³⁾ Individual calculated for each Calibration Process, must not be used for Outdoor Application.

Model 525 Series Certification/Calibration Information

(form PR-TRL-AL-02.docx)

The sensors go through the certified calibration process to document for record with +- 1% accuracy.

The recorded error	readings for this sensor was:	.71 ,96		
Calibration Date: _	7-31-19	S/N:	81179 - 819	
BY:	VR			

NOTICE!!!

During Shipment the tipping assembly has been secured to avoid possible damage to the pivot assembly. Lift off collection and remove rubber band from inside to release tipping mechanism before installation.

Calibration Certification - Digital Humidity- and Temperature Sensors

Calibration Certification

Name and address of the manufacturer: Sensirion AG Laubisruetistrasse 50 CH-8712 Switzerland

Description:

Digital Humidity- and Temperature Sensors

•	SHT1x	•	SHT2x
•	SHT3x	•	SHT7x
•	SHTC1	•	SHTW1
•	STS21	•	STSC1

The above mentioned products are calibrated to meet the specifications according to the corresponding Sensirion data sheet. Each device is individually tested after its calibration.

Sensirion uses transfer standards for the calibration. These transfer standards are themselves subject to a scheduled calibration procedure. The calibration of the reference itself used for the calibration of the transfer standards is performed by an ISO/IEC 17025 accredited laboratory.

The accreditation body is full member of the International Laboratory Accreditation Cooperation (<u>www.ilac.org</u>). Calibration certificates issued by facilities accredited by a signatory to the ILAC Mutual Recognition Arrangement (MRA) are accepted by all signatories to the ILAC MRA.

This provides traceability of measurement to recognized national standards and to units of measurement realized at the "National Physical Laboratory" (NPL) or other recognized national standards laboratories like "Physikalisch-Technische Bundesanstalt" (PTB) or "National Institute of Standards and Technology" (NIST).

Staefa, November 2015

Hyshau W

Stephan Weber, Director, Head of Quality Management, Sensirion AG

Volker Born Manager, Head of Quality Engineering, SensirionAG

© Copyright Sensirion AG, Switzerland

VAISALA

1 (1) Certificate report no. H47-19360038

CALIBRATION CERTIFICATE

Instrument Serial number Manufacturer Calibration date PTB110 Barometer R3630397 Vaisala Oyj, Finland 5th September 2019

This instrument has been calibrated against a Vaisala PTB220 factory working standard. The Vaisala PTB220 is traceable to the National Institute of Standards and Technology (NIST, USA) via Vaisala Measurement Standards Laboratory (MSL). Vaisala MSL has been accredited by FINAS according to ISO/IEC 17025 standard.

At the time of shipment, the instrument described above was within its operating specifications.

Calibration results

Reference pressure hPa	Calculated pressure hPa	Observed voltage Vdc	Correction* hPa	Uncertainty** hPa
510.1	510.1	0.042	0.0	± 0.15
610.2	610.2	0.459	0.0	± 0.15
700.2	700.3	0.834	-0.1	± 0.15
810.2	810.2	1.293	0.0	± 0.15
900.0	900.0	1.667	0.0	± 0.15
1000.1	1000.1	2.084	0.0	± 0.15
1060.2	1060.2	2.334	0.0	± 0.15
1100.0	1100.0	2,500	0.0	+ 0.15

*To obtain the true pressure, add the correction to the barometer reading. Interpolated corrections may be used at intermediate readings of the scale of the barometer.

**The calibration uncertainty given at 95 % confidence level, k = 2

Equipment used in calibration

Туре	Serial number
HP34970A	17403
PTB220	PA 14018

Calibration date 2019-06-12 2019-03-21 Certificate number 1250-307103583 K008-C00955

Ambient conditions

Technician

Humidity: 38 ± 5 %RH

Temperature: 22 ± 2 °C

Pressure: 1007 ± 20 hPa

This report shall not be reproduced except in full, without the written approval of Vaisala.

Doc214685-B

Vaisala Oyj | PO Box 26, FI-00421 Helsinki, Finland Phone +358 9 894 91 | Fax +358 9 8949 2227 Email firstname.lastname@vaisala.com | www.vaisala.com Domicile Vantaa, Finland | VAT FI01244162 | Business ID 0124416-2